
premum; x, spatial variable; t, time; ~, infinity; c, positive ~ c6nstant; z, number approxi- 
mately equal to 3.14; 3/8t, 3/ax, partial derivatives with respect to time and space, re- 
spectively. 

DETERMINATION OF THE CONTACT THERMAL RESISTANCE FROM THE SOLUTION 

OF THE INVERSE PROBLEM OF THERMAL CONDUCTIVITY 

L. V. Kim UDC 536.24 

The contact resistance at the boundary between an orthropic reinforcing rod 
and an isotropic matrix is determined from the solution of the inverse prob- 
blem of thermal conductivity, using the gradient method. The suggested mod- 
ification of the computational algorithm as the initial calculation of the 
initial period of the thermal process is shown to enhance the resolving pow- 
er of the method and the choice of zeroth approximations from below is shown 
to ensure monotonic convergence of the solution. 

One parameter which determines the heat exchange in reinforced materials or in elements 
of complex structures is the contact thermal resistance (CTR) due to the nonideal mechanical 
coupling of the contact surfaces. In theoretical studies on CTR the contribution of the 
thermal resistance to the heat transfer across the contact interface of the media is de- 
scribed by a condition in the form 

~1 0T-----2-1= Zo OT~ 2~1 o T 1 R  = T 2 - - T  1, 
Oa " 0 1 ~  ' On 

where R is the contact thermal resistance, X l and h 2 are the thermal conductivities of the 
media in contact, and n is the normal to the contact surface. Thermal contact resistance 
has been considered as a function of the determining parameters, e.g., temperature [i], 
thermal stresses [2], and a complex of parameters in the form of the compression pressure, 
the instantaneous tensile strength, and the height of the irregularities [3]. Nevertheless, 
even though different determining parameters are chosen, the value of the thermal resis- 
tance for each specific case is determined experimentally or is approximated [4]. 

Artyukhin and Nenarokomov [5] advanced a fairly effective treatment for determining 
CTR as a function, of the temperature on the basis of the solution of the inverse one-dimen- 
sional problem. In view of this, it is of some interest to extrapolate this treatment to 
the two-dimensional case and to study the possibilities of an algorithm for the solution. 

The CTR is reconstructed on the example of an orthotropic cylindrical region surrounded 
by an isotropic medium. The mathematical simulation of the heat transfer in the media in 
contact was presented in the form of a two-dimensional, nonstationary system of equations 
involving the temperature dependence of the coefficient being sought: 

07"1 ( azT1 1 O (r aT, 1~ 
at \ az2 r Or ~ ~ / / 

aT2 OZT~ 1 0 ( OT~ 
Ot --a2 Oz z q - a a ~ r  --Or \ . r - - ~ r  ] 

T~ (z, r, O) = T~ (z, r, O) = To = const; 

aT,(O, r; l) OT~ (0, r, t) 
- -  - -  O; 

Oz Oz 

(1) 

( 2 )  
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Or 

The parametrization of the CTR was reduced to a polynomial of 

2 

T i R(T.3 = ~ c i  2. (3) 
i=O 

The inverse problem consisted in determining Eq. (3) from the condition forthe minimum of 
the objective functional 

2 T m 

I = ~ ,! ITj (zj, r~, l, R (T~))-- [ j(t)p dr, 
1=1 0 

where T and f are the model and experimental values of the temperature at the fixed points 
j = I, 2 of the media in contact. The temperature measurements are assumed to be made along 
the axis of the region studied and in the central part of the isotropic material. The func- 
tional is minimized by the method of quickest descent [6] 

a[ (4) c~+', = r  ~ .  
aQ 

where k is the number of the iteration, ci ~ are the parameters of the zeroth approximation, 
and Bk is the depth of the descent. As the regularization parameter we take the number of 
iterations corresponding to the termination of the iteration cycle by the requirementthat 
the levelof discrepancy of the functional match'the error of the experimental data. The 
procedure of moving to the next iteration according to (4) is carried out on the basis of 
thesolution of auxiliary boundary-value problems obtained for the temperature increments 
in order to determine the depths of descent and for the sensitivity functions in:order to 
determine the components of the gradient of the functions. The form of these problems is 
similartothe initial system of equations (1)-(2), but with singularities in the boundary 
conditions at the contact between the media: 

-- for the first problem 
~ O0.(z, R,, t) = ~.1 a(O~.(z, R~, t) 

Or Or ' 

OTo ( O R  O._,+AI~)__;% 00o. R 
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where 9 ~ a n d  02 a r e  the  increments  of  t empera tu re  in the  i s o t r o p i c  and o r t h o t r o p i c  r eEions ,  
r e s p e c t i v e l y ,  and AR is  t h e : i n c r e m e n t  of  the  CTR; 

- f o r  t he  second problem 

Z~ O~g~(z' R~, t) = ~.~ O~g~(z, R~, t) , 

Or Or 

aci 

where ~li and P2i are sensitivity functions. 

;The inverse problem of thermal conductivity (s solved numerically on:the basis 
of the.methods of subcomponent splitting and difference factorization [7]. The effective- 
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ness of the algorithm was checked, first by solving the direct problem with a known depen- 
dence of the CTR on the temperature, after which the solution was used as the initial in- 
formation for solving the inverse problem. As was to be expected, the iteration cycle was 
left on the basis of coincidence of neighboring iteractions in the case when the values of 
ci ~ corresponding to the solution of the direct problem were taken as the zeroth approxima- 
tion. We point out that the calculations are carried out for dimensionless temperature, 
which is obtained as the ratio of T to To. This makes it possible to dispense with order- 
of-magnitude checking of the values of ci ~ in (3) and to reduce their choice to values of 
one order of magnitude. 

In solving the IPTC, when the thermophysical characteristics are reconstructed as 
functions of the temperature, use is quite often made of the values of these coefficients 
at some initial temperature. When such information is lacking, however, as noted in [8], 
the determination of the functional relation itself depends strongly on the accuracy of 
this approximation, and in the given case this is ci ~ Accordingly, Kolesnikov and 
Protod'yakonova [8] proposed an algorithm for two-stage determination of the coefficients: 
In the first stage the IPTC is solved on the assumption that the reconstructed character- 
istics are constant in time over the entire computing interval while in the second stage 
the same problem is solved, but with allowance for the temperature dependence of the co- 
efficients and using the solution of the first stage as the zeroth approximation. 

This algorithm was used in model calculations to determine the CTR for %l = I00 W/m.K, 
~2 = 150, ~3 = 80, a I = 9.6.10 -s m2/sec, a 2 = 2.10 -4, a 3 = 10 -4, L = 2.10 -2 m, R l = 10 -3, 
and R 2 = 3.10-3; the thermal flux density q0(z) in this case varied exponentially from 
3.105 to 3.106 W/m 2. A check of the effectiveness of the algorithm when the CTR as a 
function of the temperature varied within 10% revealed a satisfactory picture. The maximum 
deviation of the calculated temperature dependence of the CTR from the model dependence 
did not exceed 7%. Some difficulties with the algorithm are encountered when theCTR is 
markedly dependent on the temperature, e.g., 

2 

R(T ) = (5) 
i=0 

The temperature factor in (5) reached a value of five because of the existence of longitu- 
dinal nonisothermicity and the coefficient R varied by almost an order of magnitude. When 
calculations were carried out in accordance with [8], it turned out that in the first stage 
the algorithm does not allow even an indirect solution to be obtained since there was no 
quitting of the iteration cycle, even though the discrepancy criterion was increased from 
5.10 -3 to 1.0, which corresponded to allowing a 30% deviation of the calculated temperature 
from the model temperature. 

At the same time the modification of the computational algorithm in the form of a com- 
puting interval in the first stage to the initial heating of the region studied gives a 
positive result both for a moderate dependence of the CTR on the temperature and for (5). 
When the first initial steps with respect to time and the value of the termination criter- 
ion (5.10 -2 ) are incorporated into the calculation (this criterion corresponded to an al- 
lowed deviation of the calculated temperature from the model temperature by no more than 
3%), we obtained the value R = co = 3.362"i0 -3 in the first stage. The result of the sec- 
ond stage, with allowance for the temperature dependence of R and the use of the solution 
of the first stage as the zeroth approximation, reconstructed a polynomial in the form 

R (T~)--3,228.10-~ + 5,949.10-ST~+8,526.10-~T~, 

where it was assumed that el ~ = c2 ~ = 10 -6 

Comparative analysis of the dependence obtained with the model dependence (5) showed 
that the maximum errors, not exceeding 20%, are observed in the initial and final portions 
of the computational period and that R is determined with complete reliability in the middle 
part. The effectiveness of the computational algorithm was also checked on the solution 
of the problem with perturbed data. The absolute deviations from the model thermal curve 
varied within 2-5% and were random. The results of our numerical analysis showed that as 
the amplitude of the perturbations in the initial data decreased, the relative error of 
the reconstructed CTRs decrease from ii to 7% and this indicates the real convergence and 
stability of the solution. The proof of the uniqueness remains an open question. 
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The proposed modification of the computational algorithm nevertheless enhances the re- 
solving power of the method and can be used to solve inverse problems of thermal conductivity 
with coefficients. 

NOTATION 

T o , initial temperature; T I and T2, temperatures of the isotropic and orthotropic re- 
gions, respectively; t, time; z, r, cylindrical coordinate system; al, a2, and a 3, thermal 
diffusivities of the isotropic and orthotropic materials; q0, thermal flux density; R(T2), 
contact thermal resistance; R I and R=, inner and outer radii of the isotropic region; L, 
length of the complex cylindrical region; Ii, thermal conductivity of the isotropic mater- 
ial; and X 2 and XB, principal thermal conductivities of the isotropic material. 
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EFFICIENT ORGANIZATION OF THE QUENCHING OF ROLLED PRODUCTS 

ON THE BASIS OF SOLUTION OF AN EXTERNAL INVERSE HEAT-CONDUCTION 

PROBLEM 

E. G. Bratuta, Yu. M. Matsevityi, A. V. Multanovskii, 
and Yu. A. Selikhov 

UDC 536.24.02 

Results are presented from mathematical modeling of the thermal interaction 
of sprayed liquid with a surface. The results made it possible to determine 
the depth of hardening of a flat-rolled product. 

One of the most promising methods of heat treatment for strengthening rolled products 
is intensive cooling of a hot surface with a disperse liquid produced by flat-jet nozzles 
[i]. Of particular importance in this operation is the cooling rate AT/At in the tempera- 
ture range from the critical point corresponding to the beginning of austenite decomposition 
to the temperature at which its stability is minimal, i.e., within the range 850-450~ It 
is evident that mathematical modeling of the quenching process is impossible without reliable 
information on heat-transfer conditions and thermophysical characteristics (TPC) of the 
metal. A method was described in [2] to determine boundary conditions in the cooling of a 
surface by a sprayed liquid on the basis of solution of an external inverse heat-conduction 
problem (ICP) with the use of an iterative filter. The same study demonstrated the possi- 
bility of simultaneous identification of the TPC and boundary conditions by the solution of 
a combination ICP. 
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